SHORT PAPERS

Note on an E-Plane Waveguide Step with
Simultaneous Change of Media

JAMES P. MONTGOMERY anp LEONARD LEWIN

Abstract—A simple quasi-static formula for the discontinuity
susceptance of a 2:1 E-plane waveguide step with a simultaneous
change of media is found using the theory of singular integral equa-
tions. An important difference from previous solutions by this method
comes from the determination of the constants in the solution.

I. INTRODUCTION

Many techniques are available to investigate the effects of an E-
plane waveguide step discontinuity. Among these, the conformal
mapping solution [1] is perhaps the most commonly used. Other
techniques such as the modified residue calculus method [2] and
direct mode matching are also available. When a simultaneous change
of media (see Fig. 1) occurs at the step, the conformal mapping solu-
tion is no longer applicable. Although the other techniques mentioned
can still be used, they do not display the simplicity that was charac-
teristic of the conformal mapping solution of the empty waveguide
step.

This short paper investigates the E-plane parallel-plate step dis-
continuity with a simultaneous change of media by applying the the-
ory of singular integral equations [3]. In order to use this theory, the
step ratio must be integrally related [4]; and to this end, a 2:1 step
is analyzed. The solution obtained is simple, involving only Euler’s
psi-function, which is well tabulated [5]. An account of the difficulty
in treating a nonintegrally related step ratio is given in [6], and the
same difficulty persists with the present case of unequal media.

II. THEORY

In the region 2z <0, the transverse fields are
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Note that we are assumming that only the dominant TEM modes
propagate on either side of the discontinuity.

In a manner similar to Lewin [4], one may match the fields at
2=0 and arrive at the following quasi-static integral equation:
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where the transformation of variables ny/6 —6 has been used and
E(6) is the unknown electric field at 2=0. In order to arrive at a
singular integral equation, the derivative with respect to ¢ of (3)
must first be taken. Then following closely the procedure used to
solve a similar H-plane waveguide step [4], we may arrive at the fol-
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Fig. 1. Step discontinuity geometry.
lowing singular integral equation:
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where the integral is a Cauchy principle value. Upon making the sub-

stitution
2
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and the change of variables
y=sin¢/2 x=sin6/2

(4) becomes
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where [7(x)dx=E(©)dd. (No confusion should arise from the x, ¥
variables of (5) and the coordinate variables x, ¥.)

Equation (5) is of a similar form as the equation found for the
asymetrical H-plane waveguide step [4], except that (5) is homogene-
ous. Equation (5) may be solved by reduction to Carleman form.
Again, paralleling the previous development we find as a solution
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and Gy, Ce, Cs, and Cy are undetermined constants. Now the form of
the electric field is symmetrical about ¥ =0, and this is sufficient to
determine Ci, C3, and Cs. Since F(x) must be even we find the unique
solution

Cz = 1 Ca = C4 = 0
The multiplier C; may be found by noting that
1
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Hence, we find
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where

The one remaining unknown, the reflection coefficient, is deter-
mined by recourse to the original integral equation (3). Since Ris a
constant, independent of ¢, we may conveniently evaluate the inte-
grals encountered when substituting (7) into (3) by letting ¢=0.
Upon s 1mming the series, one encounters integrals of the form
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Fig. 2. Susceptance as a function of e1/es.

and
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These integrals may be evaluated by changing the integration vari-
able to X, replacing the logarithmic terms in the integrand by appro-
priate integrals involving dummy variables, and then reversing orders
of integration. After some lengthy manipulations, one finds the fol-
lowing expression for the input admittance at 2=0:
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where ¥(x) is Eulet’s psi-function and v is Euler’s constant.

III. DiscussioN oF RESULTS

In order to ascertain the validity of the solution, two convenient
checks are available.

The first check is the edge condition. It is well known that the be-
havior of the field near a sharp corner plays an important role in the
uniqueness of the solution. Using (7), one can show that near the
corner at z =0, the electric field behaves as

E(A) ~ 0(A—0-8)) (10)
where A= (b—y). For equal media, 8=1/3, and the field behaves as
E(A) ~ 0(a7113)

a well-known result. In general, we may use Mittra and Lee [2] and
find that
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and m =e /e, By using a trigonometric identity, it is seen that the
results in (10) and (11) are identical.

Another check is a comparison with the known solution of the
case e =¢;. Hence, §=1/3, and we have
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which agrees with the predominant term of Marcuvitz [1].

Hence, (9) should be accurate to within a few percent for reason-
able choices of material parameters,

Fig. 2 illustrates the behavior of (B/Y:)(r/k1b)(e:/e2) as a func-
tion of m=¢ /e It is seen to be nearly constant over at least two
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decades of m. It may also be noted that, for the quasi-static approxi-
mation used here, the permeabilities do not appear in the expression
for the discontinuity susceptance, which is purely capacitive.

IV. CoNCLUSIONS

This short paper has found the effects of a 2:1 E-plane waveguide
step with a simultaneous change of media. The solution has been
found by application of the theory of singular integral equations. It
should be noted that the conformal mapping solution is no longer
valid because of the change in media. Other methods may be used to
solve this problem for an arbitrary step ratio; however, these solu-
tions do not exhibit the simplicity of (9). Perhaps in its simplicity, the
solution obtained here can guide one in the effects of such a discon-
tinuity. If desired, one might then proceed to a more complete solution.
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The Synthesis of Quarter-Wave Coupled Circulators
with Chebyshev Characteristics

J. HELSZAJN

Abstract—The purpose of this short paper is to give an exact
theory of quarter-wave coupled circulators with Chebyshev char-
acteristics. The synthesis starts by replacing the lumped-element
equivalent shunt resonator of the circulator by a distributed one that
has the same susceptance slope parameter as the original circuit.
In this way the overall network involves commensurate transmission
lines only. The bandwidth over which the assumed form of the
equivalent circuit applies is carefully discussed in terms of the two
split frequencies of the magnetized junction. Tables for the required
circulator parameters and transformer admittances for one and two
transformer sections as a function of VSWR and bandwidth are in-
cluded. The realizable solution for the latter arrangement is severely
restricted by the equivalent circuit of the basic junction. Experi-
mental results on an octave-band stripline circulator, with a two-
section transformer, are also included.

I. INTRODUCTION

An important property of the 3-port junction circulator is that an
ideal circulator is obtained when the junction is matched [1]. One
well-known method of broad-banding this device is to use external
matching networks. One arrangement that is often used consists of a
cascade of quarter-wave transformers [2]-[4].

An approximate theory for this type of network has been given in
[2]. The purpose of this short paper is to give an exact synthesis pro-
cedure for the case of one- and two-step transformers that will give
an equal-ripple Chebyshev response for the reflection coefficient of
the overall circulator network. This short paper assumes in the usual
way that the equivalent network at the reference terminals of the
junction consists of a shunt lumped-element resonator in parallel
with the gyrator conductance of the circulator [4]-[7]. The synthesis
procedure then starts by replacing the lumped-element resonator by
a distributed one consisting of a quarter-wave short-circuited trans-
mission line that has the same susceptance slope parameter as the
original circuit. The two circuits are equivalent provided their sus-
ceptance slope parameters are the same. The equivalent circuit of the
device can therefore be represented by a quarter-wave short-circuited
transmission line in parallel with the gyrator conductance of the cir-
culator. The admittance of the distributed network is uniquely re-
lated to the susceptance slope parameter, once the nature of the net-
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